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ABSTRACT
A new method for estimating heat fluxes from heating

rate measurements and an approach to measure heating
rates is proposed. Heating rate is defined as the time
rate of change of the temperature. The example problem
involves analytic heat conduction in a one-dimensional slab,
where the measurement location coincides with the location
of the estimated heat flux. The new method involves
the solution to a Volterra equation of the second kind,
which is inherently more stable than Volterra equations
of the first kind. The estimates of the new approach
are compared to typical inverse solution methods. The
heating rate measurements are accomplished by leveraging
the temperature dependent decay rate of thermographic
phosphors. Results indicate that the new data-reduction
method is far more stable than minimizing temperature
residuals with errors of the order of the measurement noise.

INTRODUCTION
Aerospace vehicles often encounter deleterious heating

environments during high-speed flight. Accurate character-
ization of heating loads, then, is crucial to survivability of
aerospace structures. In controlled tunnel tests, prediction
of a heat flux incident on a test article can provide
meaningful information concerning the environment that
a full-scale structure will experience, whereas temperature
measurements typically do not scale well from tunnel to
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flight conditions. Herein lies the necessity to predict heat
fluxes. However, characterization of heating loads (or heat
flux) in tests is not trivial because direct measurement is
difficult.

Although the prediction of heat fluxes contain inherent
challenges, three methods have evolved to accomplish the
task with varying degrees of success. The most obvious
approach to predicting heat fluxes is direct measurement
with a heat flux gauge [1, 2]. These gauges usually consist of
a thermopile and actually measure temperature differences,
which can be converted to heat fluxes. Problems associated
with these measurements include slow response time, flow
disturbance and calibration. A second approach involves
measurement via a calorimeter [3]. Like the heat flux
gauge, these devices often suffer from slow response time
and flow disturbance. Further, the estimation of the heat
flux from the actual measurement is complicated by the
fact that the heat load is not uniform across a surface
because of lateral heat conduction [4]. Recently new
techniques for heat flux determination have become more
popular such as thermochromatic liquid crystals (TLC) [5].
Conceptually, this process involves layers of crystals in thin
films aligning themselves based on temperature gradients.
The orientation can be inferred from spectral measurement
of reflected light. The technique is global but currently
suffers from lagging response times [6] and a limited range
of operation.

An attractive alternative for predicting heat fluxes
is direct measurement of temperature followed by an
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data reduction technique to estimate the incident flux
[7]. Temperature measurement can be accomplished
with tremendous precision and accuracy [8] with high
frequency components [9]. In fact thin film temperature
measurements have become so robust and used extensively
to predict heat fluxes that the literature will often incor-
rectly refer to these types of measurements as heat flux
measurements. However, the data reduction is inherently
unstable [10] and multi-dimensional effects are difficult
to resolve [11]. Inverse methods, however, address these
concerns with statistically based estimation methods. For
a comprehensive evaluation of one-dimensional methods
for surface temperature methods, see Walker and Scott
[12]. The advantages of temperature measurement devices
coupled with inverse techniques make this approach to
heat flux determination attractive. For example, because
temperature measurement devices are usually smaller,
the time response is much better and the effect on the
incident flows can be minimized. In addition, temperature
measurements are easier to calibrate and the data reduction
is not limited to one-dimensional estimation [13]. Therefore,
it can be argued that temperature measurements and
inverse data reduction techniques are preferable.

Despite advances in techniques devised to solve ill-
posed problems and account for noisy data, the fact remains
that appropriate data reduction remains a balancing act
between introducing smoothing bias and amplification of
noise. Solutions in many cases still contain unacceptable
errors [14]. The present work suggests that many of
the stability problems associated with the inverse heat
conduction problem can be mitigated by measuring a
different quantity, namely the heating rate. The heating
rate in the present context is defined as the time rate
of change of temperature for a given location and time.
It can be shown that the data reduction is inherently
more stable if this quantity could be measured. However,
no method currently exists to measure the heating rate
directly. This approach represents a departure from typical
heat flux determination methods such as those discussed
briefly above, because the temperature is not explicitly
required for the estimation of heat flux.

The objectives of the present work are to demonstrate a
stable method for estimating heat flux from measured heat-
ing rate and to describe a technique to measure heating rate.
The estimation component involves a test problem with
various boundary conditions and simulated noise, which is
a common approach to evaluating inverse methods. The
measurement technique involves the temperature sensitive
decay rate of thermographic phosphors (TGP). Although
TGPs have been used to measure temperature (particularly
for remote measurement), the current approach will lever-
age particular properties of TGPs to obtain measurements,

which are proportional to the heating rate, not temperature.
Thermographic phosphors are rare-earth-doped ceram-

ics that fluoresce when exposed to ultraviolet radiation or
similar excitation. In general, the intensity, frequency line
shift and decay rate are all temperature dependent. As a
result, they have been used for remote temperature sensing
in many applications [15]. Many materials have been used
and tuned for specific applications with a great deal of
success [16, 17, 18, e.g.]. However, they have never been
used to predict a heating rate. It is the strong dependence
of the decay rate on temperature that will be leveraged
to acquire a heating rate. This simple proof-of-concept
described herein demonstrates the ability to extract heat
fluxes with far greater accuracy than previously possible.

THEORY
Although the approach presented here can be gener-

alized to almost any conduction problem, the following
example will be used for illustration purposes. Assume one-
dimensional conduction in a slab of length L. The governing
equation for temperature with boundary conditions is given
as

∂2θ

∂η2
=

∂θ

∂ξ
; (1)

−
∂θ

∂η

∣

∣

∣

∣

η=0

= Q(ξ); (2)

θ(η = 1) = 0; (3)

θ(ξ = 0) = 0. (4)

where the temperature has been normalized to the initial
temperature To such that θ = T − To. The spatial and
temporal coordinate have been non-dimensionalized (i.e.
η = x/L, ξ = αt/L2, where α is the thermal diffusivity).
The heat flux Q at η = 0 is a continuous function of ξ and
is presumed known. Using an integral transform technique,
the infinite series solution is found to be

θ(η, ξ) =
∞
∑

m=1

2 cos(βmη)

∫ ξ

0

Q(ξ′)eβ2

m(ξ′
−ξ) dξ′, (5)

where the eigenvalues are found as the positive roots of
cos(βm) = 0 (βm = (2m + 1)π/2 where m = 1, 2, 3, . . . ).
A more computationally efficient or convenient solution
may be found, but for the present discussion, the foregoing
expression exhibits the requisite traits.

If the heat flux Q(ξ) is unknown, equation 5 is a
Volterra equation of the first kind for a known temperature,
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and the solution is unstable for discrete temperature
measurements with noise. If we assume that that the
temperature on the surface is measured at N discrete
times, then an estimate for the unknown heat flux can be
found using standard inverse solution techniques. A brief
description of a discrete least-squares residual-minimization
technique follows.

First we represent the unknown heat flux as a truncated
series

Q(ξ) ≈ Qd(ξ) =

M
∑

i=1

aiΦi(ξ), (6)

where Qd is an infinite-term series of linear independent
basis functions (Φ) and expansion coefficients (ai). ξ− >
ξi has been implicitly assumed. Note that M ≤ N ,
where the equality will lead to a unique solution (exact
matching of data), and the inequality will represent an
over determined system. Discrete surface temperature
calculations can be constructed by replacing the continuous
heat flux Q(ξ) in equation 5 with the approximate heat flux
(equation 6). The residual to be minimized is constructed
from the difference between the measurements (Yi) and the
calculated values of temperature at the surface.

RY = Yi −

∫ ξ

0

Qd(ξ
′)K(ξi, ξ

′) dξ′, (7)

where equation 5 is written in terms of a kernel and the
discrete boundary heat flux. The kernel is simply the
temperature solution scaled by the discrete flux. For the
present example the kernel is given as

K(ξ, ξ′) =

∞
∑

m=1

2 cos(βmη)eβ2

m(ξ′
−ξ). (8)

A least-squares minimization of the L2-norm of the residual
leads to an estimation of the expansion coefficients. The
global matrix solution follows [19] and is given as Aā = b̄,
where ā is the vector of unknown expansion coefficients, and

b̄i =

N
∑

j=1

θjPi(ξi), and (9)

Aij =

N
∑

j=1

Pk(ξj)Pi(ξj). (10)

In the foregoing solution,

Pk(ξj) =

∫ ξj

0

Φk(ξ′)K(ξj , ξ
′) dξ′. (11)

This formulation represents a classical approach to solving
inverse heat conduction problems with measured tempera-
tures.

In the present work, heat flux is calculated analytically
by assuming a piecewise constant heat flux over each time
step and setting the residual in Eq. 7 to zero. The
integration can be performed analytically leading to a set
of N equations

Yi =

i
∑

r=2

Qr

∞
∑

m=0

[

eβ2

m(ξr−ξi) − eβ2

m(ξr−1−ξi)
]

. (12)

The solution of the foregoing expression leads to an estimate
of the heat flux at each time step. Realize that the solution
contains a slight bias depending on whether the constant,
Qr, is assumed to be over the previous or future time step.
However, this bias can be essentially eliminated by choosing
an average value for the heat flux. In other words, we can
replace Qr with (Qr + Qr−1)/2.

The alternate approach to predicting heat flux requires
measurement and calculation of the heating rate. A heating
rate can be found analytically by differentiating equation 5
with respect to time. The formulation, given as

Φ(ξ) =
∂θ

∂ξ
=

∞
∑

m=0

2 cos(βmη)

[

Q(ξ) − β2
m

∫ ξ

0

Q(ξ′)eβ2

m(ξ′
−ξ) dξ′

]

, (13)

suggests that the nature of the solution for heat flux is
not as ill-conditioned because equation 13 is a Volterra
equation of the second kind [20]. The solution for heat
flux follows the solution from a measured temperature (i.e.
equation 7) by considering a finite series of basis functions
(equation 6). Now the residual is given as the difference
between the measured heating rate (Hi) and the calculated
heating rate (equation 13). As before, the heat flux can
be calculated analytically by assuming a functional form of
the heat flux over the time step that is integrable. It is not
immediately clear that the infinite series in Eq. 13 converges
in a finite number of terms. For high-order terms, the heat
flux must equal the integral on the right hand side. In
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fact, the convergence rate is sensitive to the functional form
of the heat flux approximation between times. Therefore,
this feature precludes the most simple solution approach
of piecewise constant heat flux over the time step because
this approximation creates a biased estimator that requires
many terms to converge.

A satisfactory approach that generates unbiased solu-
tions in a reasonable number of terms is a piecewise linear
approximation.

Q(ξ) = Qr−1 +
Qr − Qr−1

ξr − ξr−1
(ξ − ξr−1),

ξr−1 < ξ < ξr. (14)

As before, the residual is set equal to zero, RH = Hi −

Φ(ξi) = 0, and the heat flux is calculated analytically from
the set of N equations.

Φi =
i

∑

r=2

∞
∑

m=0

2 cos(βmη)

{

eβ2

m(ξr−1−ξi)

β2
m(ξr−1 − ξi)

[

Qr−1(1 − β2
mξr−1 + β2

mξr) − Qr

]

+

eβ2

m(ξr−ξi)

β2
m(ξr−1 − ξi)

[

Qr(1 + β2
mξr−1 − β2

mξr) − Qr−1

]

}

. (15)

It is implicitly assumed that Φ(ξi) = Φi. The solution to
the foregoing expression is unbiased and stable, which will
be demonstrated.

The measurement of heating rate is not a direct
measurement. Instead, the intensity of phosphor emission
is measured at a sample rate that is higher than the decay
rate. The phosphors are excited in pulses that are longer
than the decay rate, so the measurements give an effective
change in intensity with respect to time for a pulse. This
appears to be similar to measuring two temperatures in
time and differentiating to obtain a heating rate. However,
the change in intensity is an exponential function, and the
measurement is not differentiated. Therefore, measurement
noise is not amplified significantly during the conversion to
a heating rate.

Because the phosphor emission intensity is an exponen-
tial function in time,

I

Io

= exp

[

−
t

τ

]

, (16)

the decay rate can be estimated from a series of intensity
measurements. If we assume that the phosphor has

been completely and carefully characterized, the decay
rate is a material property that is a well-known function
of temperature. This is the approach used to predict
temperature from phosphor-decay rate. For interesting
engineering problems, though, the temperature is not
constant. Therefore, we use a first-order Taylor series
expansion of the decay rate to introduce the derivative of
τ . Now the normalized intensity,

I

Io

= exp

[

−
t

τ + ∂τ
∂t

∆t

]

, (17)

contains two parameters that are estimated from a series of
intensity measurements. Now the heating rate can be found
from

∂θ

∂t
=

∂θ

∂τ

∂τ

∂t
, (18)

where ∂θ/∂τ is a temperature dependent material prop-
erty. This approach requires three intensity measurements
compared to two temperature measurements required for
a finite-difference heating rate data collection. However,
the integration process in Eq. 17 is more stable than a
differencing of noisy data [21].

RESULTS
To compare different methods for predicting heat flux,

a known analytic function was chosen as the exact heat
flux, Q, to which all estimates will be compared. Table 1
lists each type of heat flux that was examined. The
exact analytic solution to both the temperature, Y , and
the heating rate, H , (Eqs. 5 and 13, respectively) were
calculated to provide the measurement data, from which
the estimates will be derived. Further, normally distributed
random noise was added to the measurements to evaluate
how the estimators behave when measurement error exists
in the temperature, Yn, and heating rate, Hn. Initially, the
estimates were obtained from the discrete measurements by
assuming a piecewise constant heat flux over each time step.
This essentially reduces the basis to be unity over the time
step and zero everywhere else.

The first test case examined is the triangular heat flux,
whose surface temperature history is shown in Fig. 1 with
and without additional noise. The noisy signal is obtained
by adding a normally distributed random component with
standard deviation of σ = 0.01. Visually, the noise is a small
percentage of the actual signal. The simulated discrete
temperature measurement is sampled at 50 Hz. The two
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Table 1. Reported errors are root mean square of the differences

between the exact heat flux, Q, and the estimated heat fluxes.

QY QYn
QH QHn

QHd

zero n/a 0.4732 n/a 0.0021 0.0443

triangle 0.0329 0.4458 ∼ 0 0.0021 0.0451

square 0.2929 0.2923 ∼ 0 0.0021 0.0956

sinusoid 0.1300 0.5894 0.0189 0.0185 0.0808
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Figure 1. The exact temperature response to a triangular heat flux profile

(see Fig. 2). The noisy signal has a normally distributed random noise

with standard deviation σ = 0.01.

temperature histories are used to predict heat fluxes by
inverting Eq. 5. This is inherently an unstable process,
and the estimate from noisy data, QYn

in Fig. 2, shows
that small errors become amplified in the solution. The
errors seen in the solution from exact data arise from the
piecewise-constant approximation. No attempt to relax the
solution, introduce bias or otherwise implement any inverse
technique has been made. Therefore, the results represent
an exact matching or zero residual technique, which is a
“worst-case” scenario. Nevertheless the estimates serve as
a benchmark for subsequent comparison.

The new approach requires a measured heating rate,
which is generated similarly to the measured temperature
and is shown in Fig. 3. The exact solution to the heating
rate equation (Eq. 13) with a known triangular heat flux
is sampled at 50 Hz to generate the exact measurement,
H . Further, normally distributed random noise with a
standard deviation of σ = 0.01 is added to create noisy
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Figure 2. The heat flux history estimates are derived from the tempera-

tures in Fig. 1. The estimate from the exact temperature, QY generates

errors because of the piecewise-constant approximation. The estimate

from noisy data, QYn
, demonstrate how small errors become amplified.

signal, Hn. These data are displayed in Fig. 3 along
with a finite difference formulation of the heating rate,
Hd. The difference scheme represents a crude method
for heating rate determination. In other words, Hd is
generated by applying a central difference scheme to the
noisy temperature measurements, Yn. This approach
produces the overwhelmingly noisy signal in Fig. 3. The
heat flux estimates are then calculated directly by inverting
Eq. 13, which is identical to the approach for estimating
heat fluxes from temperature measurements. The results
shown in Fig. 4 demonstrate that the inversion of the
Volterra equation of the second kind is not nearly as
sensitive to noise as the Volterra equation of the first kind
as expected. In fact the error in the noisy estimate, QHn

appears to be damped, and the solution contains no bias
and almost no noise. However, the surprising feature is
that QHd

, which was produced from a signal whose noise is
nearly comparable to the signal, faithfully reproduces the
original heat flux with reduced errors. Table 1 demonstrates
that the estimates from all varieties of the heating rate (H ,
Hn and Hd) contain very little error.

It is important to note that the heating rate estimator
is a biased estimator. Even though the errors in the
measurements are damped, the solution is sensitive to the
approximation made for the heat flux between time steps.
The simplest approach is to assume piecewise constant.
However, this approximation introduces significant bias and
requires an infinite number of terms to converge. Further,
round-off issues become significant. As a result, a piecewise
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Figure 3. Heating rate response to a triangular flux. H is the exact

solution; Hn contains normally distributed random noise with a standard

deviation of σ = 0.01; Hd is a central finite difference of the noisy

temperature measurement Yn.
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Figure 4. The heat flux history estimates are derived from the heating

rate for a triangular heat flux (see Fig. 3). The errors are damped for both

cases and any bias is imperceptible.

linear distribution of heat flux was assumed. Because the
original heat flux can be exactly represented as a set of
piecewise linear segments, the solution does not contain any
approximation and converges in less than 20 terms. It is not
clear what the requirement for convergence actually is, so
the approach was tested on a square heat flux as shown in
Fig. 5. At the corners, the exact flux actually is piecewise
constant, not piecewise linear, so we might expect to see a
bias. Visually, the estimate from noisy data, QHn

, exhibits
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Figure 5. Heat flux estimates of a square flux. The exact heat flux is not

shown because it is virtually identical to QHn
.

no bias, and measurement errors are damped. In fact the
exact flux is not shown in Fig. 5 because the graphical
resolution required to distinguish the two estimates is not
adequate.

CONCLUSIONS
A new approach to predicting heat flux is proposed,

which will improve heat flux estimates by reducing instabil-
ities inherent in temperature to heat flux data reduction
methods. By measuring the heating rate, the integral
equation for heat flux becomes a Volterra equation of the
second kind, which is inherently more stable than the first
kind. Analysis confirms that the method is a great deal
more stable and can accommodate more noise than an ap-
proach that uses temperature measurements. The method
for measuring heating rate uses thermographic phosphors,
which is already being used to measure temperatures. The
method should be evaluated with experimental data to
verify the utility of this method.

In general the data reduction method described is valid
for temperatures measured in any location, even though in
the present treatment the measurement is assumed to be
on the surface. A surface treatment was assumed because
the heating rate measurement process described can only
occur at the surface. Additional work will evaluate the
methodology for interior temperature measurements.
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